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With a view to optimizing the design of carbon-nanotube �CNT� windmills and to maximizing the internal
magnetic field generated by chiral currents, we present analytical results for the group-velocity components of
an electron flux through chiral carbon nanotubes. Chiral currents are shown to exhibit a rich behavior and can
even change sign and oscillate as the energy of the electrons is increased. We find that the transverse velocity
and associated angular momentum of electrons are a maximum for nonmetallic CNTs with a chiral angle of
18°. Such CNTs are therefore the optimal choice for CNT windmills and also generate the largest internal
magnetic field for a given longitudinal current. For a longitudinal current of order 10−4 A, this field can be of
order 10−1 T, which is sufficient to produce interesting spintronic effects and a significant contribution to the
self-inductance.
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Chiral nanotubes and nanowires are of interest for a range
of properties associated with external magnetic fields,1 their
potential for creating nanoscale inductors,2 and their sug-
gested role as building blocks in chiral nanomotors.3 Ex-
amples studied to date include chiral carbon and BC2N
nanotubes,4–6 BN nanotubes,7 Fe-filled carbon nanotubes
�CNTs�,8 and chiral single-wall gold nanotubes.9

Most recently, interest in chiral currents has been re-
kindled by their potential to drive CNT nanometer-scale
motors.10–12 Such motors benefit from low interwall fric-
tion13 and a high tensile strength,14 which allow one to engi-
neer complex structures,15–17 including nanoscale bear-
ings,10,18 rotors,17,19 oscillators,20–23 switches,24 and tele-
scopes.25 The helical arrangement of the atoms in chiral
CNTs can be exploited26,27 to produce a Brownian ratchet
effect,3 rotational and translational motions driven by ther-
mal gradients,28,29 and motion30 induced by circularly polar-
ized light. Recently a drive mechanism for CNT windmills
was proposed31 based on the torque generated by a flux of
electrons passing through a chiral CNT. It was shown that
under appropriate conditions, the dominant contribution to
this torque is proportional to the flux of angular momentum
carried by electrons moving in the corresponding infinite chi-
ral CNT. This provides a useful guide for the design of CNT
windmills, since a calculation of the angular momentum and
associated chiral currents carried by electrons in infinite chi-
ral nanotubes does not require the solution of a scattering
problem.

The fact that large chiral currents occur in CNTs is at first
sight surprising since early first-principles studies2,4 sug-
gested that chiral CNTs do not carry a significant chiral cur-
rent. In this paper we study the energy and voltage depen-
dences of chiral currents in CNTs and show that the small
chiral current found in Ref. 4 is a consequence of the metal-
lic nature of the CNT studied. In contrast for nonmetallic
CNTs, we predict much larger chiral currents. We find that
the energy dependence of chiral currents is surprisingly rich.
Indeed the transverse current components can even change
sign and oscillate as the energy of the electrons is increased.

We demonstrate that the presence of large chiral currents
produces significant magnetic fields of order 0.1 T within the
volume of a CNT, thereby providing a nanoscale magnetic
test tube, which could be used to manipulate the magnetic
moments of encapsulated magnetic molecules or particles.
This internal field produces a significant contribution to the
self-inductance of the CNT, which must be added to the
more usual contribution associated with the external mag-
netic field.32

To define the velocity components of electrons in chiral
CNTs, we follow the notation of Ref. 33, which introduces
the lattice vectors of the corresponding infinite two-
dimensional graphene sheet, defined by a1= �

�3
2 , 1

2 �a and a2

= �
�3
2 ,− 1

2 �a, where a=�3ac-c and ac-c=1.44 Å is the carbon-
carbon bond length. A �n ,m� CNT, where �0�m�n� are
integers, is then defined by a transverse chiral vector Ch
=na1+ma2, which wraps around the CNT circumference and
a longitudinal translation vector T. We are interested in re-
solving electron velocities along axes x and y, which are

parallel to the unit vectors Cĥ and T̂, respectively. The ve-
locity components are given by �vx=�E�k� /�kx and �vy

=�E�k� /�ky, where kx=k ·Cĥ, ky =k · T̂, and E�k� is the en-
ergy dispersion relation. In the simplest Slater-Koster
scheme, E�k� takes the form33

E�k� = ��1 + exp�− ik · a1� + exp�− ik · a2�� , �1�

where � is the hopping integral.
Each miniband possesses a continuous longitudinal wave

vector ky and is labeled by a quantized value of kx given by

kx
q =

2�q

�Ch�
�q = 1, . . . ,Nhex� , �2�

where Nhex is the number of hexagons in a CNT unit cell. For
a given choice of E and q, Eq. �1� can be solved to yield two
values of ky. One of these values, which we denote ky

+�q ,E�,
corresponds to a positive longitudinal velocity
vy�q ,ky

+�q ,E��. The other value, which we denote ky
−�q ,E�,
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corresponds to a negative longitudinal velocity
vy�q ,ky

−�q ,E��. In what follows, we refer to these electrons as
“right moving” and “left moving,” respectively. We are in-
terested in the transverse velocities of right-moving elec-
trons, which we denote by vx�q ,ky

+�q ,E��. Our aim is to com-
pute the total transverse velocity vx

�n,m��E� of all right-moving
electrons of energy E, which in units of the Fermi velocity vF
is

vx
�n,m��E� = �

q
vx�q,ky

+�q,E��/vF, �3�

where the sum is over all minibands with real longitudinal
wave vectors of energy E.

At low-enough energies, the wave vectors of miniband q
�namely, �kx

q ,ky
+�q ,E�� and �kx

q ,ky
−�q ,E��� can be chosen to be

close to the K point K. Since E�k� is an even function of k,
there will be another pair of wave vectors in the vicinity of

the second K point −K, given by �kx
q� ,ky

−�q� ,E��= �−kx
q ,

−ky
+�q ,E�� and �kx

q� ,ky
+�q� ,E��=−�kx

q ,ky
−�q ,E��, which pos-

sesses negative and positive longitudinal group velocities,
respectively.

The contribution to the sum in Eq. �3� from these two
minibands is

vx�q,E� = vx�q,ky
+�q,E�� + vx�q�,ky

+�q�,E��

= vx�q,ky
+�q,E�� + vx�− q,− ky

−�q,E��

= vx�q,ky
+�q,E�� − vx�q,ky

−�q,E�� . �4�

The last line in this expression is useful because it allows
us to focus on the contributions from a single K point only. It
also demonstrates that a nonzero transverse velocity arises
from trigonal warping since for a perfect Dirac cone, the
right-hand side of Eq. �4� would vanish. This suggests that at
low energies, an analytical expression for vx�q ,E�, can be
obtained by writing the electron wave vector in the form k
=K+�, where K= �0,1�4� / �3a� is a vector pointing from
the origin to a K point and Taylor expanding E�k� as a power

series in �x and �y, where �x=� ·Cĥ and �y =� · T̂. This
expansion is of the form

E2 = �
i,j=0

�

cij�x
i �y

j , �5�

where the coefficients cij satisfy c00=c10=c01=c11=0 and
c02=c20=3�2 / �4a2�, c21=−c03 /3=27�2a3mn�m+n� /16�n2

+m2+nm�3/2, c12=3�3�2a3�m−n��2n+m��2m+n� /16�n2

+m2+nm�3/2. Differentiating this with respect to �x and writ-
ing �kx

q ,ky
��q ,E��=K+ ��x ,�y

��, yields to order ���y
��2���x�,

2Evx�q,E� = c12���y
+�2 − ��y

−�2� + �x�2c21��y
+ − �y

−�

+ 2c22���y
+�2 − ��y

−�2�	 . �6�

To compute �y
� for fixed �x and E, we consider two cases.

The first case arises when �x�0, in which case one obtains

vx�q,E�/vF =
2�xc21

E
�E2/c02 − �x

2. �7�

The second case corresponds to �x=0. In this case, Eq. �5�
yields to lowest order, E2=c02�y

2+c03�y
3, which after solving

by iteration and combining with Eq. �6� yields

vx�q,E�/vF = − c03c12E
2/c02

5/2, �8�

where vF=c02
1/2 /�=�3� /2a� is the Fermi velocity.

Since kx=2�q / �Ch� and Kx=K ·Cĥ=2��n−m� /3�Ch�,
the value of �x for the lowest-energy miniband is �1
=2��−X /3� / �Ch�, where X=1 for n=m+1, n=m+4, etc.,
whereas X=−1 for n=m−1, n=m+2, n=m+5, etc. and
X=0 for n=m, n=m�3, etc. Values of �x for higher-
energy minibands are obtained from �1 by adding or
subtracting integer multiples of 2� / �Ch. For nonmetallic
CNTs, where X= �1, the value of �x for the second mini-
band is �2=2��2X /3� / �Ch�, whereas for metallic CNTs,
�2= �2� / �Ch�.

For � j�0 Eq. �7� yields for the dimensionless transverse
velocity associated with channel � j of a �n ,m� CNT

vx
�n,m��� j,E� = vx�q,E�/vF = v j	 j

3/2�	 − 	 j�1/2/	 , �9�

where

v j = 3�6mn�n + m�/�n2 + m2 + mn�3/2�sign of � j� .

�10�

In this expression, 	=E /� and 	 j is the energy minimum of
the jth miniband �in units of �� given by 	j= ��3 /2�a�� j�.

The above result applies to all low-energy minibands, ex-
cept the first miniband of metallic CNTs, for which �1=0. In
this case, Eq. �8� yields

vx
�n,m��0,E� = v0	2, �11�

where

v0 =
�3mn�m2 − n2��2n + m��2m + n�

4�n2 + m2 + mn�3 . �12�

This quadratic dependence on 	 means that low-energy trans-
verse currents in metallic CNTs are indeed small, in agree-
ment with Ref. 4. In contrast the square-root dependence
arising when � j�0 means that transverse currents in nonme-
tallic CNTs are predicted to be much larger. This behavior is
illustrated in the exact results of Fig. 1, obtained by differ-
entiating Eq. �1� with respect to the transverse and longitu-
dinal wave vectors. For each miniband q the red curves of
Fig. 1 show the dimensionless velocities vx�q ,ky

+�q ,E�� /vF
as a function of E for the �8,m� family of CNTs. The black
curves show the quantity vx

�n,m��E�, obtained by adding the
values of the red curves for each open channel of energy E.
As expected, for the achiral �8,8� CNT vx

�n,m��E�=0, whereas
for the chiral CNTs vx

�n,m��E��0.
As well as predicting the energy dependence of transverse

velocities, Eqs. �10� and �12� also yield the sign of
vx

�n,m��� j ,E�. For example, when n and m are positive, the
sign of v1 is equal to the sign of �−X� and therefore for the
first open miniband of a �8,4� CNT, vx

�8,4���1 ,E� is negative,
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whereas for the first miniband of a �8,6� CNT, vx
�8,6���1 ,E� is

positive. Similarly, when n
0 and m
0, the sign of v0 is
equal to the sign of �m-n�. Hence, Eq. �12� shows that for the
lowest miniband of a �8,5� CNT, vx

�10,4��0,E��0. For succes-
sive higher-energy minibands, � j alternates in sign and there-
fore Eqs. �9� and �10� reveal that the transverse velocities of
successive higher-energy minibands have a square-root 	 de-
pendence with an alternating sign. In Eq. �3�, the label q
sums over N�E� right-moving open channels, where N�E� is
a discontinuous function of E, which changes by an integer
whenever new channels open or close. As predicted by Eq.
�4�, the red curves in Fig. 1 show that right-moving channels
open or close in pairs and just as a pair of channels open,
their tangential velocities cancel. Consequently, as shown in
Fig. 1, vx

�n,m��E� is a continuous function of E, with a discon-
tinuous first derivative.

For the purpose of designing a CNT windmill with the
largest torque,34 or a CNT with the largest internal magnetic
field, it is of interest to compute the maximum integrated flux
of transverse momentum carried by right-moving electrons
in an infinite chiral CNT. Since CNTs with �1�0 possess the
most favorable energy dependence for vx

�n,m���1 ,E�, we focus
on nonmetallic CNTs. Since vx

�n,m���1 ,E� and vx
�n,m���2 ,E�

have opposite signs, the sum vx
�n,m��	�=vx

�n,m���1 ,E�
+vx

�n,m���2 ,E� increases monotonically with E for 	1�	
�	2 and then decreases with E for 	
	2, passing through
zero when 	=	max. Hence the maximum integrated flux of
transverse velocity is proportional to

vmax
�n,m� = 


	1

	max

d	vx
�n,m��	� . �13�

From Eq. �9�, one obtains 	max=15	2 /14 and

vmax
�n,m� =

�mn�n + m��sign of �− X��
�n2 + m2 + mn�5/2 , �14�

where �=2�6�2�4 arctan� 1
�14

�−arctan��8
7 ���10.9.

Equation �14� reveals that vmax
�n,m�→0 as n ,m→�, which

reflects the fact that the angular momentum carried by an

electron wind is a consequence of the finite diameter of the
CNT and the finite difference between successive values of
� j. We also note that the optimum values of �n ,m�, which
maximize vmax

�n,m� are those which possess a chiral angle close
to � /3−cos−1 �11 /20�18°.

Having analyzed the transverse velocity of electrons in a
chiral nanotubes, we now estimate the magnetic field gener-
ated by these electrons. In what follows we assume that the
chiral CNT can be approximated by a long solenoid with a
constant magnetic field B inside the CNT and zero field out-
side. Since the number of right-moving electrons per unit
length in channel q is �1 /���dE /vy�q ,ky

+�q ,E�� and these
pass around the circumference of the CNT in a time 

= �Ch� /vx�q ,ky

+�q ,E��, the contribution to the tangential cur-
rent per unit length from the qth miniband is
��1 /���dE /vy�q ,ky

+�q ,E��	e /
. The magnetic field B inside
a solenoid is �0 multiplied by the tangential current per unit
length. Hence the field due to all right-moving electrons in
an energy window eV is

B =
2e�0

h�Ch�
0

eV

dE�
q
� vx�q,ky

+�q,E��
vy�q,ky

+�q,E��
���E − Eq�� ,

�15�

where Eq is the lowest energy of the qth miniband.
Since the current carried by these electrons is I= �1 /
����0

eVdE�q���E−Eq��, the magnetic field can be written as
B=�0I� / �Ch�, where

� =



0

eV

dE�
q
� vx�q,kx

+�q,E��
vy�q,ky

+�q,E��
���E − Eq��



0

eV

dE�
q

���E − Eq��
. �16�

The dimensionless parameter � is the average ratio of the
transverse and longitudinal group velocities. At low voltages,
Eq. �4� allows this to be written as a sum over channels near
the K point K and using Eq. �9�, one obtains

FIG. 1. �Color online� Velocity components
for the �8,m� family of CNTs plotted against the
energy E �eV�, where m=8,4 ,5 ,6 in �a�–�d�, re-
spectively. The red curves show the transverse
velocities vx�q ,ky

+�q ,E�� /vF of right-moving
electrons belonging to individual channels q. The
black curves show the total velocity vx

�n,m��E� of
Eq. �3�.
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� =



0

eV

d	�
j
�v j	 j

�2
���	 − 	 j�



0

eV

d	�
j

��	 − 	 j�
. �17�

For 	1�eV /��	2, this yields �=v1	1 /�2, which is of order
unity for �8,4� or �8,6� CNTs. Consequently, for a current of
10−4 A, �B��10−1 T, which is large enough to produce sig-
nificant spintronic effects,35 such as rotating the magnetic

moment of a small magnetic island36 or a metallocene encap-
sulated within a CNT.37 By computing the energy stored in
this magnetic field, we find an associated inductance per unit
length of L=�0�2 /4�. This internal field could be detected
through NMR measurements on encapsulated spins and
could form the basis of scanning magnetoresistance probe
with nanometer spatial resolution. Finally we note that if the
longitudinal current is driven by an ac voltage, the oscilla-
tions present in vx

�n,m��E� will lead to the generation of higher
harmonics, which may provide an alternative probe of chiral
currents.
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